חAmIBIA UחIVERSITY OF SCIEПCE AПD TECHחOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION : BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 7
COURSE CODE: QPH 702S	COURSE NAME: QUANTUM PHYSICS
SESSION: NOVEMBER 2022	MAPER: THEORY
DURATION: 3 HOURS	MARK: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Prof Dipti R. Sahu
MODERATOR:	Prof Vijaya S. Vallabhapurapu

INSTRUCTIONS

1. Answer any Five questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

Non-programmable Calculators

THIS QUESTION PAPER CONSISTS OF 4 PAGES (Including this front page)

Question 1

1.1 List with reason, three properties of a valid wave of a bounded state.
1.2 Replace the following classical mechanical expressions with their corresponding quantum mechanical operators.
a. $K . E .=1 / 2 m v^{2}$ in three-dimensional space.
b. $\quad p=m v, a$ three-dimensional cartesian vector.
c. y-component of angular momentum: $L_{y}=z p_{x}-x p_{z}$.
1.3. How to describe a system in quantum mechanics?
1.4 For a particle moving freely along the x-axis, show that the Heisenberg uncertainty principle can be written in the alternative form: $\Delta \lambda \Delta x \geq \lambda^{2} / 4 \pi$ where Δx is the uncertainty in position of the particle and $\Delta \lambda$ is the simultaneous uncertainty in the de Broglie wavelength.
1.5 What is the significance of wave packet

Question 2

2.1 Consider a one-dimensional particle which is confined within the region $0 \leq x \leq a$ and whose wave function is $\psi(x, t)=\sin (\pi x / a) \exp (-i \omega t)$.
(a) Find the potential $V(x)$.
(b) Calculate the probability of finding the particle in the interval $a / 4 \leq x \leq 3 a / 4$.
2.2 Consider the one-dimensional wave function

$$
\begin{equation*}
\psi(x)=\mathrm{A}\left(x / x_{0}\right)^{n} e^{-x / x_{0}} \tag{10}
\end{equation*}
$$

where A, n and x_{0} are constants. Using Schrodinger's equation, find the potential $V(x)$ and energy E for which this wave function is an eigenfunction. (Assume that as $x \rightarrow \infty, V(x) \rightarrow 0)$.

Question 3

3.1 The wavefunction of a particle moving in the x-dimension is

$$
\psi(x)= \begin{cases}N x(L-x) & 0<x<L \\ 0 & \text { elsewhere }\end{cases}
$$

3.1.1 Normalize the wavefunction

3.1.2 Determine the expectation value of x

3.2 Evaluate the probability current density of the wavefunction,

$$
\begin{equation*}
\Psi(x)=5 \exp (-3 i x) \tag{2}
\end{equation*}
$$

3.3 The potential function $V(x)$ of the problem is given by

$$
V(x)= \begin{cases}V_{0} & x>0 \tag{10}\\ 0 & x<0\end{cases}
$$

where V_{0} is constant potential energy.
Find the wave function for $\mathrm{E}<\mathrm{V}$ 。 where E is the incident particle energy and interpret the results.

Question 4

4.1 Obtain the spin matrix S_{2} for spin $s=\frac{3}{2}$ particle using the eigenstates of S^{2} as the basis
4.2 Evaluate the commutation of L_{2}, L_{3}.
4.3 Consider a system which is initially in the state
$\psi(\theta, \phi)=\frac{1}{\sqrt{5}} Y_{1,-1}\left((\theta, \phi)+\sqrt{\frac{3}{5}} Y_{1,0}(\theta, \phi)+\frac{1}{\sqrt{5}} Y_{1,1}(\theta, \phi), \quad\right.$ Find $\langle\psi| L_{+}|\psi\rangle$

Question 5

5.1 Consider an infinite well for which the bottom is not flat, as sketched here. If the slope is small, the potential $V=\varepsilon|x| / a$ may be considered as a perturbation on the square-well potential over $-a / 2 \leq x \leq a / 2$.

Calculate the ground-state energy, correct to first order in perturbation theory. Given Ground state of box size a : $\psi_{0}=\sqrt{ }(2 / a) \operatorname{Cos} \frac{\pi x}{a}$, Ground state energy $E_{0}=\frac{h^{2} \pi^{2}}{2 m a^{2}}$
5.2 The wave function of the ground state of hydrogen has the form.

$$
\Psi_{100}=\frac{1}{\sqrt{\pi r_{0}^{3}}} e^{\frac{-r}{r_{0}}}
$$

Find the probability of finding the electron in a volume dV around a given point.
5.3 Evaluate the constant B in the hydrogen-like wave function

$$
\begin{equation*}
\Psi(r, \theta, \phi)=B r^{2} \sin ^{2} \theta e^{2 i \varphi} \exp \left(-\frac{3 Z r}{3 a_{0}}\right) \tag{10}
\end{equation*}
$$

Question 6

6.1 The wavefunction of a state of harmonic oscillator is given by:

$$
\Phi(\mathrm{x})=\left(\frac{m \omega}{64 \pi \hbar}\right)^{\frac{1}{4}}\left(\frac{4 m \omega}{\hbar} x^{2}-2\right) \quad \exp \left(-m w x^{2} / 2 \hbar\right) \quad ;-\infty<x<\infty
$$

Obtain the corresponding energy of the state.
6.2 A particle moves in a one-dimensional box with a small potential dip

$$
\begin{aligned}
& V=\infty \text { for } x<0 \text { and } x>l \\
& V=-b \text { for } 0<l<(l / 2) l \\
& V=0 \text { for }(l / 2) l<x<l
\end{aligned}
$$

Treat the potential dip as a perturbation to a regular rigid box ($V=\infty$ for $\mathrm{x}<0$ and $\mathrm{x}>\mathrm{l}, V=0$ for $0<$ $\mathrm{x}<0$. Find the first order energy of the ground state. The ground state energy and wavefunction is given by $\quad E^{0}=\frac{\pi^{2} \hbar^{2}}{2 m l^{2}}, \quad \psi^{0}(\mathrm{x})=\sqrt{\frac{2}{l}} \sin \frac{\pi x}{l}$

Useful Standard Integral

$$
\begin{aligned}
\int_{-\infty}^{\infty} \mathrm{e}^{-y^{2}} \mathrm{dy}=\sqrt{\pi}
\end{aligned} \quad \begin{gathered}
\int_{-\infty}^{\infty} \mathrm{y}^{\mathrm{n}} \mathrm{e}^{-y^{2}} \mathrm{dy}=\frac{\sqrt{\pi}}{\mathrm{n}} ; n \text { even } \quad \int_{-\infty}^{\infty} \mathrm{e}^{-\alpha y^{2}} \mathrm{e}^{-\beta \mathrm{y}} \mathrm{dy}=\left(\frac{\pi}{\alpha}\right)^{\frac{1}{2}} e^{\frac{\beta^{2}}{4 \alpha}} \\
0 ; n \text { odd }
\end{gathered}
$$

$\int_{0}^{\infty} x^{n} e^{-x} \mathrm{dx}=\mathrm{n}!$

